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Previous research in pattern formation using reaction-diffusion mostly fo-
cused on static domains, either for computational simplicity or mathematical
tractability. In this work, we have explored the expressiveness of combining
simple mechanisms as a possible explanation for pigmentation pattern for-
mation, where tissue growth plays a crucial role. Our motivation is not only
to realistically reproduce natural patterns but also to get insights into the
underlying biological processes. Therefore, we present a novel approach to
generate realistic animal skin patterns. First, we describe the approximation
of tissue growth by a series of discrete matrix expansion operations. Then,
we combine it with an adaptation of Turing’s non-linear reaction-diffusion
model, which enforces upper and lower bounds to the concentrations of the
involved chemical reagents. We also propose the addition of a single-reagent
continuous autocatalytic reaction, called reinforcement, to provide a mecha-
nism to maintain an already established pattern during growth. By careful
adjustment of the parameters and the sequencing of operations, we closely
match the appearance of a few real species. In particular, we reproduce in
detail the distinctive features of the leopard skin, also providing a hypothe-
sis for the simultaneous productions of the most common melanin types,
eumelanin and pheomelanin.
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1 INTRODUCTION
Growth is an essential mechanism of life and a continuous process
since the inception of all living beings. Although much research
has been done on cellular biochemistry, the overall mechanisms
responsible for growth have been only partially uncovered by now,
and are already very complex [Wolpert et al. 2015].
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Reaction-diffusion is a well-known model conceived by Turing
[1952], being later used in Computer Graphics by the pioneering
works of Turk [1991],Witkin and Kass [1991] and Fowler et al. [1992]
for simulating natural phenomena. Although interest in reaction-
diffusion faded along the years for the graphics community, it con-
tinued to play a major role in theoretical models from Mathematical
Biology [Maini et al. 2012; Meinhardt 2009; Murray 2003].
We are interested in the general problem of reproducing the ap-

pearance of animal skin patterns. Instead of focusing on procedural
methods [Hu et al. 2019], exemplar-based techniques [Raad et al.
2018] or indirectly through machine learning [Zhou et al. 2018], we
show that a reduced subset of simulated biological mechanisms is
enough to generate accurate textures.

Our main contribution is showing that the adequate approxima-
tion of tissue growth combined with reaction-diffusion is the key
to the emergence of complex yet realistic patterns. By carefully
adjusting model parameters and setting up distinct growth phases,
we can match skin pigmentation of mammals and other animals.
In particular, we have produced in silico the characteristic leopard
rosettes, depicted in a 3D rendering in Figure 1.

Fig. 1. Synthetic leopard coat: pigmentation generated by our technique
and then rendered in 3D by assigning individual fur colors. The skin below
the fur layer has a uniform pink color and it is barely visible.
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2 RELATED WORK
The seminal work of Turing [1952] provided a plausible yet contro-
versial hypothesis for morphogenesis, that is, the biological process
that drives an organism to develop its shape and appearance. In
Biology, a pattern refers to any visual or spatial organic structure,
hence the development of life forms happens through many pattern
formation processes. In this paper, we use the term more strictly,
where pattern describes the variation of color over a surface.

Turing proposed an abstract chemical reaction, which could give
rise to coherent patterns, even when starting from a random initial
state. This mechanism was called reaction-diffusion (RD), describ-
ing the interaction of two reagents (chemical substances) and being
modeled by a pair of differential equations.
Two papers introduced RD for Computer Graphics. Turk [1991]

used a RD model adapted from Bard [1981], which in turn was
derived from Turing’s original non-linear equations. Turk achieved a
variety of results by applying two phases to the simulations. First, the
model was runwith a set of parameters creating a base pattern. Then,
a second simulation was performed with different parameters, while
freezing part of the base pattern. Witkin and Kass [1991] provided
parameterized geometric distortion and anisotropic patterns by
varying the diffusion rates along the 𝑥 and 𝑦 dimensions.

The Gray-Scott model was presented by Pearson [1993], which
produced complex pattern dynamics. Still, the fundamental visual
features were the same as in other RD models, that is, spots and
labyrinths. Later, Sanderson et al. [2006] showed that applying
anisotropic diffusion and spatially modulating parameters produced
controllable patterns. They generated images similar to fish skin pig-
mentation and were able to constrain patterns into desired shapes.

Many CGworks already addressed the close relationship between
form and texture, as in the traditional problem of texturing surfaces
of arbitrary topology [Knöppel et al. 2015]. Few works pursued
the link between dynamic growth and appearance. Walter et al.
[2001] showed that cell division driven by growth produced the
characteristic pattern of a growing giraffe and the big cats. Albeit
distinct from a RDmodel, its basis was the discrete simulation of cell
proliferation as the focus of the growth processes, running over an
expanding 3D surface. Runions et al. [2005] described a model that
incorporates growth to describe geometric leaf vein development.

Point-based methods are fairly common for applications like fluid
or crowd simulations, but there are fewerworks that address biologic
patterns as the result of the interaction of discretized cells.
Fleischer et al. [1995] proposed a rule-based cellular system, fo-

cused on the modeling of surface details such as scales, feathers and
thorns. Kider Jr et al. [2011] provided a reaction-diffusion model
to generate growth patterns for areas of fungal and bacterial infec-
tion, changing both the visual and geometric properties of synthetic
fruits. Volkening and Sandstede [2015] created a complex simulation
to account for the formation of stripes in zebrafish, using direct cell
signaling. Malheiros and Walter [2017] proposed a generic simu-
lation system, implementing reaction-diffusion among a close ar-
rangement of unorganized cells on a 2D domain. Recently, Gingras
and Kry [2019] developed a new procedural 3D shape modeling
approach, where a RD simulation affects the local expansion and
bending of the surface of a growing thin shell.

3 OVERVIEW
Our focus is on using reaction-diffusion as a general technique for
producing patterns.

For that, we have developed a particular RD model that provides
more expressibility than prior works, by coupling it with an approx-
imated tissue growth scheme.

We then systematically searched its parameter space, being able
to closely match pigmentation patterns found in nature.

A piece of two-dimensional skin tissue can be approximated by a
rectangular matrix, where each matrix element roughly describes a
single biological cell. This representation is both compact in terms
of memory usage and very convenient when locating nearest neigh-
bors, as nearby cells are directly found through indexing access.

However, when the tissue grows, the cell division process has to
be simulated, which implies creating new cells among the already
existing ones. This is usually done through point-based methods,
following the analogy to a dense yet unorganized set of cells as part
of real living tissue, typically resembling Voronoi polygons.

A major bottleneck of point-based techniques is their dependence
on Nearest Neighbor Search (NNS) algorithms, as locating nearest
cells must be performed for each cell, at each simulation step. Such
algorithms are computationally intensive, even more for evolving
domains, represented by a dynamic set of moving points. Though
using specialized data structures like 𝑘-d trees, NNS still takes a
significant portion of the simulation time [Weaver and Xiao 2016].
In our work, we take a different direction. We approximate the

continuous development of a tissue by a series of discrete matrix
expansion operations, which randomly insert new matrix elements
akin to biological cell division. However, after one growth step, we
still have the domain represented as a rectangular matrix, therefore
keeping the benefits of having a fast and coherent data structure. In
Section 4 we describe this scheme.
Although having developed this matrix expansion technique in-

dependently, we have later found the work of Binder et al. [2008],
which also performs modification on a matrix. Differently, the au-
thors employ cellular automaton rules, using only fixed-state cells
and with no reaction-diffusion mechanisms taking place.

In Section 5, we describe the pigment formation process, employ-
ing reaction-diffusion over an expanding domain. The RD model
employed in this paper is based on the equations from Bard [1981],
subject to concentration limits and further modified to have more
intuitive parameters to adjust pattern behavior and scale. In Section
6 we address the need for a mechanism to maintain the pattern dur-
ing growth, developing a novel single-reagent autocatalytic model.
Pattern maintenance is a topic first raised by Fowler et al. [1992],
and for that, we generalize the discrete reinforcement mechanism
discussed by Malheiros and Walter [2017].

Our results are discussed in Section 7. To achieve pattern diversity,
instead of discretely altering the pattern or spatially controlling
the parameters as in prior works, we opted to extensively explore
the parameter space of our RD model and only employ domain
expansion during the simulation.

In Section 8 we present our contributions, discuss current limita-
tions and present future research opportunities.
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4 TISSUE GROWTH
Growth is a fundamental process for any life form. Although bio-
logic growth mechanisms are still not completely understood, they
are known to be carefully regulated processes. We are particularly
interested in approximating skin tissue growth.

4.1 Matrix expansion
Given a rectangular matrix with𝑚 rows and 𝑛 columns, we can per-
form a matrix expansion by simply adding a new row or column.
Figure 2 shows the result of expanding a matrix in the horizontal
dimension, by adding a new column. Likewise, this operation may
be performed in the other dimension, thus adding a whole new row
of elements (here representing discrete biological cells).
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Fig. 2. Column expansion. (a) Initial state, where one cell from each row is
randomly chosen (marked with a strong outline). (b) After the selected cells
are subdivided, with new cells inserted on their right side (all black cells),
shifting the rightmost cells.

To approximate tissue growth, this expansion is performed in two
passes: first creating a new row and shifting all cells accordingly in
one dimension; then, a new column is created, shifting again part
of the cells in the other dimension. After the division the parent
and child cells are identical, so there is no practical difference in
considering the insertion of the newborn cell on the right or left
of its parent cell. Although this is a very rough approximation
of the division of biologic cells, it is an adequate method for the
domain expansion of a reaction-diffusion simulation, as discussed in
Section 5. A timing comparison with simulations using point-based
Nearest Neighbor Search algorithms is made in Appendix A.

4.2 Random cell division
The indices for cell division can be picked following any particular
probability distribution. Typically, a uniform random distribution is
used. In Figure 3 we show the outcome of applying different random
generators for the location of new cells. Alternatively, we might
have separate control by employing a distinct distribution for each
dimension. We have statistically checked that shuffling row and
column indices is equivalent to using a uniform distribution, so this
latter approach is used in most experiments.

The implementation of these expansion operations is straightfor-
ward when applied to a rectangular matrix: values are simply copied
into a larger memory area, adding a row or column offset after the
indices of the divided cell. This is particularly useful because our
simulation employs two matrices to represent the concentration
of each reagent: the current and the next state, thus the expansion
does not need to be done in-place.
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Fig. 3. Distinct strategies when selecting row and column indices. The
matrix starts with size 100 by 100, with a single dark color, and is expanded
until it reaches 200 by 200. Lighter colors indicate subdivided cells added
later. In the top row (from left to right): shuffling row and column indices,
uniform distribution, clipped normal distribution and triangular distribution.
In the bottom row, we show the associated index distribution histograms.

5 PIGMENT FORMATION
The process of pigment formation using reaction-diffusion is driven
by a pair of parameterized differential equations. Such a system
represents an idealized auto-catalytic chemical reaction involving
two reagents, here named A and B.
Although there are many published reaction-diffusion models,

we developed a variation of Turing’s non-linear RD model because
it has a simple implementation and provides efficient numerical
computation. Furthermore, this model has been already addressed a
few times in the literature, which provided in-depth analysis.
We made slight modifications to Turing’s model to reduce the

number of parameters, making the exploration of its parameter
space more tractable. Then, we have provided an alternative set of
artist-oriented parameters, which makes fine-tuning the generated
results easier. Last, we also added configurable upper and lower
bounds to the concentrations of the reagents, which greatly expands
the model generational expressiveness.

5.1 Original model
Turing [1952] (page 65) proposed a particular non-linear reaction-
diffusion model as the basis for pattern formation. Bard and Lauder
[1974] were the first to computationally explore it, slightly modi-
fying the original terms. Their model is shown as Equations 1 and
2, where 𝑎 and 𝑏 express the chemical concentrations of the two
diffusible reagents A and B, respectively.

𝜕𝑎

𝜕𝑡
= 𝑆𝑝 (16 − 𝑎𝑏) + 𝐷𝑎∇2𝑎 (1)

𝜕𝑏

𝜕𝑡
= 𝑆𝑝 (𝑎𝑏 − 𝑏 − 𝛽) + 𝐷𝑏∇2𝑏 (2)

Reaction-diffusion equations have a reaction part and a diffu-
sion part. The reaction is interpreted as the system feedback, which
either produces or consumes a given reagent based on the current
concentrations of both reagents. In Equation 1, for example, the
reaction part is given by 𝑆𝑝 (16 − 𝑎𝑏), whereas the diffusion part
is given by 𝐷𝑎∇2𝑎. Diffusion accounts for the reagent exchange
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among nearby locations within the two-dimensional domain (which
here is discretized into a rectangular matrix). The diffusion rates are
given by 𝐷𝑎 and 𝐷𝑏 , indicating how fast the diffusion happens for
each reagent. Bard and Lauder [1974] also proposed the addition of
an 𝑆𝑝 parameter over Turing’s original system to adjust the intensity
of both reaction parts, which remained in ensuing literature.

5.2 Proposed model
We performed a reparameterization of the original model, to both
reduce the number of parameters and to better control the generated
patterns. Our model is shown in Equations 3 and 4.

𝜕𝑎

𝜕𝑡
= 16 − 𝑎𝑏 + 𝑟𝑠∇2𝑎 (3)

𝜕𝑏

𝜕𝑡
= 𝑎𝑏 − 𝑏 − 12 + 𝑠∇2𝑏 (4)

We have fixed the 𝛽 parameter as 12. Originally, the parameter
𝛽 would vary locally, having a slight fluctuation around the fixed
value of 12. This was the source of randomness that made patterns
appear, as the initial concentrations of both reagents were all set
to 4. Choosing a different set of 𝛽 values would thus result in a
distinct pattern. We opted to use the simpler approach of making
𝛽 = 12, where the variations are driven by controlled randomness in
the initial concentrations of A or B. This approach of having fixed
equation parameters and starting with varying initial conditions
can be traced back to the work of Gierer and Meinhardt [1972], who
proposed other well known RD systems.
We have also replaced 𝐷𝑎 and 𝐷𝑏 by more intuitive parameters,

defining ratio 𝑟 = 𝐷𝑎/𝐷𝑏 and scale 𝑠 = 𝐷𝑏 . That is, we decouple
the actual pattern development behavior (expressed by 𝑟 ) from the
overall pattern size (indicated by 𝑠). These parameters can then be
adjusted independently, providing finer control. As far as we could
verify, prior RD research focused on obtaining distinct patterns by
varying the reaction coefficients and keeping the diffusion rates
fixed, as in the work of Miyazawa et al. [2010]. Differently, we
assume that the constants 16 and −12 are immutable (being directly
linked to an abstract chemical reaction) whereas diffusion rates
might be biologically controlled by cellular mechanisms.
Finally, we have found the usage of 𝑆𝑝 confusing, because it

affects both the perceived scale of the pattern and the velocity of
the simulation. As we can directly adjust the pattern scale through
𝑠 , we have fixed 𝑆𝑝 = 1, thus removing it from our model.

5.3 Model implementation
As the diffusion follows Fick’s second law, we used a numerical
implementation of the discrete Laplacian ∇ operator over the near-
est matrix elements. We used as integration scheme the standard
nine-point stencil, covering a Moore neighborhood of unitary size,
representing isotropic diffusion1.

For the numerical integration, we have evaluated several alterna-
tives and settled on the simplest approach: first-order forward Euler
integration [Sanderson et al. 2006].We employed a fixed time stepΔ𝑡
during the simulation, which multiplies both the reaction and diffu-
sion parts of the model equations. The default value was 0.01, being
1That is, [ [1, 4, 1], [4,−20, 4], [1, 4, 1] ]/6.

decreased when numerical instabilities appeared. Higher-accuracy
methods gave similar results, in spite of more computational cost.

All paper figures exhibit the concentration of one reagent mapped
into a linear color map2. Unless noted, the B reagent is shown. The
parameters and timings are listed in Appendix A.

A reference implementation is also publicly available3.

5.4 Upper and lower bounds for concentrations
Similar to other reaction-diffusion models, patterns generated by
our model exhibit a self-adjusting behavior, being resilient to added
noise and perturbations. The consistent size of features is tradition-
ally called the pattern wavelength.
Malheiros and Walter [2017] proposed the addition of upper

bounds for the concentrations of reagents A and B, noting that
such constraints added more diversity to the resulting patterns. We
employed the same mechanism, defining the upper limit parameters
𝑈𝑎 and𝑈𝑏 , which are used to clamp the associated concentrations
at the end of each simulation step. Although there is not yet either
empirical or experimental evidence of that principle in a biological
process, we observed that the usage of upper bounds breaks the
wavelength maintenance of the RD model, yielding asymmetric
Turing patterns that matched skin pigmentation for a few species.

Reaction-diffusion models assume that reagent concentrations
are non-negative. Some models accomplish this intrinsically, like the
Gray-Scott model [Pearson 1993] whereas others have to explicitly
define a zero lower bound by clamping negative values, as originally
done by Bard and Lauder [1974].

We have found that also setting this lower limit for values higher
than zero introduces another kind of diversity in the generated
patterns, so both lower bounds are parameterized by 𝐿𝑎 and 𝐿𝑏 , and
enforced at the end of each simulation step. In fact, by imposing
these lower bounds we can achieve a similar effect as changing the
16 and −12 constants, although in a more controlled way and still
keeping the reaction part of our RD model unchanged.

Note that Equations 3 and 4 alone are not enough to generate a sta-
ble pattern, having the added requirement of B being non-negative.
This was achieved as an extra step of the numerical integration
calculation, which also enforced the lower and upper bounds for
concentrations. This proved to be very efficient, providing the quick
cycles of experimentation we needed.

However, we understand that a proper system of Partial Differen-
tial Equations (PDE) might be needed in other contexts, and thus
briefly outline here an equivalent model. Both the lower 𝐿𝑎and up-
per 𝑈𝑎 bounds for A can be explicitly enforced by adding rational
terms to Equation 3. Provided the initial values for 𝑎 are within
the (𝐿𝑎,𝑈𝑎) interval, we may add a 1

𝑎𝑘−𝐿𝑘𝑎
term for imposing its

lower bound, and 1
𝑈 𝑘
𝑎 −𝑎𝑘

+ 1
𝑈 𝑘
𝑎

term for enforcing its upper bound.
Likewise, similar terms would be added to Equation 4. We have
found that 𝑘 = 2 is enough to provide compatible results to our
model, that is, given the same parameters a very similar pattern
would be generated. In this case, the time step must be reduced by
a factor of 20 to maintain numerical stability. Domain expansion,
however, is still performed as a separate step (see Section 8.2).
2We use the inferno perceptually-uniform color map from the Matplotlib library.
3https://github.com/mgmalheiros/reaction-diffusion
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5.5 Effect of parameters
A sample of patterns obtained by varying the ratio parameter 𝑟 in
a static domain is shown in Figure 4. Three situations are shown:
standard behavior in the top row, with no imposed upper bounds,
but still restricting B to non-negative values. In the middle row,
the upper bound 𝑈𝑎 is also set, thus demonstrating the break on
the wavelength and appearance of large constant regions. In the
bottom row, just the lower bound 𝐿𝑏 is set, with positive values,
thus altering the pattern features.
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Fig. 4. Example patterns for a static domain, with matrix size 50 by 50.
Representative ratio values 𝑟 are set for each column. In the first row, the
typical behavior is shown. In the middle row, only the upper bound𝑈𝑎 is
set, while in the bottom row, only the lower bound 𝐿𝑏 is set.
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Fig. 5. Example patterns for a growing domain, with initial size 50 by 50 and
final size 100 by 100. Representative ratio values 𝑟 are set for each column.
The first row shows normal behavior. In the middle row, only the upper
bound𝑈𝑎 is set, whereas in the bottom row, only the lower bound 𝐿𝑏 is set.

If we take the same patterns as in Figure 4 and then apply domain
growth, from an initial matrix size of 50 by 50 to a final size of 100
by 100, we generate the patterns shown in Figure 5. A discussion
about initial states for the simulations can be found in Section 7.1.
Suppose we have a rectangular domain where we have already

performed many steps of a reaction-diffusion simulation. A refer-
ence pattern can be seen on the left column of Figure 6.
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Fig. 6. Pattern development during domain growth. Top rowwith no reaction
nor diffusion, middle row with standard reaction-diffusion and bottom row
with saturated RD. Columns from left to right: initial pattern (size 100 by 100),
after one matrix expansion, after ten expansions and after 100 expansions
(size 200 by 200). Iteration counts are shown on top of each pattern.

Here we define a growth rate, establishing how many expan-
sions per second should occur during the simulation. For the rows
of Figure 6, we have uniform expansion happening every second,
equivalent to every 100 simulation steps for Δ𝑡 = 0.01.

In a situation with no reaction nor diffusion, after the application
of a matrix expansion operation, cells divide simultaneously at
random positions, thus duplicating the values of matrix elements.
Repeating a few times this operation would result in a noisy image.
The sequence is shown in the top row of Figure 6. Naturally, this
is not desirable: although the overall pattern has increased in size
to match the larger domain, the original pattern would be severely
affected by noise, destroying the small feature details.
We may, however, continue to run the reaction-diffusion equa-

tions while we grow the domain. Following a biologic analogy, we
could expect chemical diffusion to be a much more rapid process
than the actual growth of living tissue, even during embryonic cell
proliferation. This is shown in the middle row of Figure 6. Time-
spaced expansions allow the pattern to gradually adapt to the new
domain, effectively absorbing the noise introduced by the random
cell divisions. We can see that the final pattern keeps its overall
features and smoothness, despite fitting into a larger domain. The
number of features has increased, each with the same wavelength.

If we enforce an upper bound to the concentration of A, it is pos-
sible to constrain the pattern development during growth, reducing
the emergence of new features. One such example is shown in the
bottom row of Figure 6, where the initial dark regions increase in
size when we set𝑈𝑎 = 5.75, evolving into a reticle of large polygons.
As the RD process is still active, some regions may be fused into the
larger ones, but the overall reticulate pattern is kept as the domain
grows. This equilibrium is not static, however, so the pattern can
still absorb the irregularities added by the expansion process.
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6 PATTERN ENLARGEMENT
We have initially expected that just coupling reaction, diffusion and
cell division would lead to consistent patterns, but the dynamic
nature of RD equations always disrupts an established shape. Even
if we imposed upper bounds to one or both reagents, an initial pat-
tern would still get affected by growth, where small features could
disappear or new ones emerge in the middle of large constant areas
(the so-called tip splitting phenomenon). Because the RD process is
still operating, new local dynamics are continually introduced into
an established pigmentation pattern as the tissue grows.
When examining patterns from large mammals with contrast-

ing fur coatings, like zebras or cows, we can see that the adult
exhibits large uniform areas of either black or white color. The bor-
ders between these colors are usually sharp, whereas the contour
themselves are often curved shapes. On most animals, there are
no visible irregularities on these color transitions. But the over-
all smooth shapes and relative size of patterns have been mostly
kept since the newborn animal. So it seems that a more complex
mechanism of pattern maintenance is still missing.

A regulation mechanism was described by Malheiros and Walter
[2017], designed to smooth pattern borders but also keep the interior
of constant regions stable, called reinforcement. That process was
rule-based, working on a single reagent, and continually altered its
concentrations towards either a lower or an upper value. We have
designed a cubic polynomial function that can provide an equivalent,
yet continuous, feedback as shown in Equation 5.

𝑓 (𝑐) = 𝛾 (𝑡 −𝑤 − 𝑐) (𝑡 − 𝑐) (𝑡 +𝑤 − 𝑐) (5)

The production and the consumption of the reagent C can be seen
as a function of the current concentration 𝑐 , where the three real
roots are placed at 𝑡 −𝑤 , 𝑡 and 𝑡 +𝑤 . The idea is to have negative
feedback for concentrations of 𝑐 in the interval (𝑡−𝑤, 𝑡), and positive
feedback for concentrations of 𝑐 in the interval (𝑡, 𝑡 +𝑤). If we let
𝛾 =

3
√
3

2𝑤2 , we have −𝑤 and𝑤 at the local minimum and maximum,
respectively. This function is plotted in Figure 7.
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Fig. 7. Plotting of reinforcement reaction term for 𝑡 = 1 and𝑤 = 1. Roots are
marked as red circles, while the local minimum and maximum are marked
by downward and upward green triangles, respectively.

Setting 𝛾 as indicated is important because it provides invariance
to both changes in the threshold value 𝑡 and the interval width𝑤 .
That is, if concentration values that define a pattern are offset or
scaled, the respective change on 𝑡 and 𝑤 will produce the same
visual result after the reinforcement mechanism is applied. Note
also that the curve slope for 𝑐 < 𝑤 − 𝑡 and 𝑐 > 𝑤 + 𝑡 keeps the

concentration in the [𝑡 − 𝑤, 𝑡 + 𝑤] interval, without the explicit
enforcement of upper and lower limits.
This function can be thought of as the reaction part of a single-

reagent autocatalytic equation. The diffusion part could be repre-
sented by the spatial Laplacian operator ∇2 multiplied by the 𝐷𝑐

diffusion rate, as shown in Equation 6. This equation bears a strong
analogy to RD systems, albeit with a simpler behavior.

𝜕𝑐

𝜕𝑡
= 𝛾 (𝑡 −𝑤 − 𝑐) (𝑡 − 𝑐) (𝑡 +𝑤 − 𝑐) + 𝐷𝑐∇2𝑐 (6)

Suppose that before this mechanism is started we already have
an initial pattern defined by the concentrations of reagent C. Dur-
ing the reinforcement process, diffusion of C occurs normally. For
each simulation step, Equation 6 is applied. The production and
consumption intervals oppose the diffusion effect, reinforcing the
regions with high and low concentrations, respectively. This keeps
the border between those areas thin. The major point is: if tissue
growth occurs, the overall shape of regions is maintained, despite
some minor detail being lost. For example, in Figure 8 we apply the
same growth as in Figure 6. If we also adjust the 𝐷𝑐 diffusion rate,
we can alter the range of the smoothing effect on borders.
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Fig. 8. Growth with continuous reinforcement. From left to right: initial
pattern (size 100 by 100), after one matrix expansion, after ten expansions
and after 100 expansions (size 200 by 200). Iteration counts shown on top.

Note that the diffusion does not affect the large light or dark areas,
but it is actively smoothing-out borders, even when new cells are
created. This smoothing is countered by the reinforcement mecha-
nism, which tries to enhance the borders, like an image processing
high-pass filter.

7 RESULTS
In this section, we show our best results so far, focused on the
faithful reproduction of the skin pigmentation patterns found on
living animals from several species.
Following the usual approach for simulating reaction-diffusion,

the domain is discretized into a regular square lattice, with𝑚 rows
and 𝑛 columns. For every discrete cell there are two associated
reagent concentrations, called 𝑎 and 𝑏. The implementation stores
these values in two equally-sized𝑚 × 𝑛 matrices of floating-point
values. Note that we name all concentrations for the first reagent as
A, and B for the second. For the leopard experiment, discussed in
Section 7.4, we add a third reagent C, represented by a third matrix.

Initial concentrations are set for the matrices. The simulation then
starts, performing many iteration steps. At the beginning of each
iteration we numerically integrate Equations 3 and 4, as discussed
in Section 5.3. After that we apply the concentration limits to the
updated concentrations, as in Section 5.4. Finally, whenmandated by
an established growth rate, the expansion process is equally applied
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to all matrices, so that the same randomly selected matrix elements
are divided, following the operation outlined in Section 4.
Note that the experiments go through one or more phases, with

model parameters kept the same during each phase. Moreover, the
final state of a phase is the same initial state of the following phase.
We use the term prepattern to describe any such initial state.

We have mapped the final concentration of a single reagent into
an interpolated color map, designed to match the overall colors of
living individuals illustrated in the photos. No further alteration
was made. Iteration counts are shown on top of the images.

7.1 Initial state
It is important to carefully address the initial state of the experiments.
Because it is crucial to the generated outcome, we defend that it must
be based on a biologically plausible hypothesis. The major difficulty
for specifying the initial state is that most of the available data is
visual information about the skin of adult individuals, although
many pattern formation studies, like the ones surveyed by Murray
[2003], point to the definition of the visual appearance of mammals
in the early stages of development on the womb.
Therefore, we employ only two types of initial states, setting

up starting concentrations close to the levels exhibited after the
patterns form and stabilize.
The first one is a constant concentration for A and a random

distribution with a small variation for B, approximating an almost
constant chemical state, as first suggested by Turing [1952]. For
most patterns shown in this paper, the initial value for A was 4,
whereas B values were uniformly distributed in the [4, 5] interval.

As a second type, we also explored the idea of a completely con-
stant initial state, with A and B set to 4. For the emergence of
patterns in this situation, randomness will be later introduced dur-
ing the simulation by a localized addition of reagent B, as discussed
in the squirrel and leopard experiments. The biologic analogy is
straightforward: specialized organelles would start to produce spe-
cific substances, which then diffuse and react accordingly as they
spread over the organism. This follows the hypothesis formulated
by Bard [1981] that the neural crest could be the initiator for the
pattern formation process in many mammals.

Further randomness is added by the cell division process, approx-
imated by the matrix expansion operations. By changing the initial
random seed we can produce variations of the resulting patterns,
in the way individuals from the same species have distinct skin
patterns yet the same overall visual features.

7.2 Exploratory approach
As our implementation was geared to interactive experimentation,
we have systematically explored variations of the parameter set,
focusing first on mapping the overall patterns possible, and then
manually adjusting parameters to match a particular skin pattern.

Many 2D parameter maps were automatically generated to cover
parameter sets, usually varying two of them in the horizontal and
vertical axis, similar to Figures 5 and 6. For our model, the most im-
portant parameter is the ratio 𝑟 , which defines the overall structure
of the pattern. As needed, the lower bound 𝐿𝑏 was altered from the
default zero value, as in Section 5.4, to induce a pattern structure.

Then, given a base pattern, we mapped the effects of varying the
upper bound 𝑈𝑎 , responsible for breaking the feature wavelength.
We also adjusted the growth rate, which induced increased pattern
complexity. Finally, interesting patterns close to already known
living species were selected and manually adjusted.
An account for the discovery of the frog pattern is made in the

Supplementary Material.

7.3 Reaction-diffusion experiments
Starting with random initial concentrations, we could reproduce the
intricacies of skin pigmentation from the reticulate whipray (Himan-
tura uarnak), shown in Figure 9. To closely match that individual,
we found that two stages were needed. A first stage is run on a static
domain with 𝑟 = 30, 𝑠 = 3 and 𝐿𝑏 = 2, starting from random values
and resulting in equispaced dark spots. A second stage maintains
all but one parameter, where the ratio is now changed to 𝑟 = 8 and
uniform growth occurs, at 2.5 expansions per second.
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Fig. 9. Top row: static domain with size 100 by 100, using 𝑟 = 30. Middle
row: growing domain, now with 𝑟 = 8, reaching final size of 200 by 200.
Bottom: reticulate whipray, photo by Brian Gratwicke (Flickr, CC BY 2.0).

If we modify the previous experiment by setting 𝑠 = 6 and 𝐿𝑏 = 3,
initializing again from random values, it takes longer to generate
equispaced dark spots, shown in the top row of Figure 10. Then we
can proceed with new parameters 𝑟 = 8 and 𝑠 = 3 during growth
with the same rate, where each spot develops into the polygonal
shapes, similar to a honeycomb whipray (Himantura undulata).

Herewe observe the hypothesis fromWatanabe and Kondo [2012],
where closely related species with distinct patterns might have the
same biochemical mechanism but with distinct parameters. Several
works already noted the ubiquity of equally spaced spots as a prepat-
tern [Headon and Painter 2009; Murray 1988; Turk 1991]. Recently,
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Fig. 10. Top row: static domain with size 100 by 100, using parameters 𝑟 = 30
and 𝑠 = 6. Middle row: growing domain, now with 𝑟 = 8 and 𝑠 = 3 (final
size is 120 by 120). Bottom: honeycomb whipray (photo by the authors).

Cooper et al. [2018] described a linear RD system generating many
discrete shark features, producing the same spotted prepattern.

Another experiment focuses on the formation of stripes on elon-
gated domains, a phenomenon first noted by Murray [1981]. We
first simulated reaction-diffusion in a static domain of size 50 by
10, with toroidal boundary conditions, 𝑟 = 4.5 and 𝑠 = 4. Starting
from random concentrations, horizontal stripes were formed, as
shown in the top left image of Figure 11. After the stripes stabilized,
the domain was grown with a rate of 0.5 expansions per second.
The dark stripes retained their size, while the light strips widened.
Given enough “spare space” was available inside the light stripes,
small dark spots started to emerge, which then grew into irregular
dark blobs. The final pattern closely matches the pigmentation of
a yellow-banded poison dart frog (Dendrobates leucomelas). Doan
et al. [2012] showed that early stages for this particular species do
present a longitudinal striped pattern with no small spots.
A current hypothesis for the origin of oriented patterns is the

cell migration originated on the neural crest. In Figure 12 we show
an experiment that simulates this phenomenon, starting from a
domain with constant concentration 4 of A and B. We then applied
uniform growth with a rate of 1.25 expansions per second. We added
a small uniformly distributed random amount at each iteration to B
in the top row, with amplitude 0.01, as an approximation of localized
production of B along the neural crest. In the initial images from
the simulation, we can see that this localized production induces
stripes oriented along the neural crest. After a while, and because
of the continued expansion, the darker regions are wide enough
to generate smaller spots. The resulting pattern is similar to the
thirteen-lined ground squirrel (Ictidomys tridecemlineatus).
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Fig. 11. Top: growing domain with only changes in parameter 𝑠 = 2, the
initial size is 50 by 10 and the final size is 125 by 85. The A reagent is shown.
Bottom: yellow-banded poison dart frog (Dendrobates leucomelas), photo by
Adrian Pingstone (Wikimedia Commons, public domain).

0 50 100

0

20

40

60

80

100

2000

0 50 100

0

20

40

60

80

100

4000

0 50 100

0
20
40
60
80

100
120

8000

0 50 100 150

0

50

100

150

16000

Fig. 12. Top row: simulation on a growing domain with initial constant val-
ues and localized random production. The initial size is 100 by 100, reaching
a final size of 180 by 180. Bottom: thirteen-lined ground squirrel, photo by
Mnmazur (Wikimedia Commons, public domain).

7.4 Combined reaction-diffusion and reinforcement
Our most significant results came from searching for an explanation
for the formation of the leopard rosettes. We strived to create a
plausible hypothesis of this pattern formation process, traced from
the secretion of some reagent over the embryo skin, during the early
days of embryogenesis, to the actual pattern of an adult leopard.
Several other works also addressed the leopard patterns [Koch and
Meinhardt 1994; Kondo and Shirota 2009; Liu et al. 2006; Malheiros
and Walter 2017; Murray 1988; Turk 1991; Walter et al. 1998], but
we believe to have developed the most complete hypothesis for its
formation, thus providing the more accurate reproduction to date.
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Even though only reaction-diffusion and tissue growth are not
enough for us to reproduce the full rosettes, when we add the rein-
forcement mechanism, we can explain several phases of its forma-
tion, namely definition, development and maintenance.

The definition phase started with constant 4 concentrations for
reagents A and B. We then added random concentrations of B with
amplitude 0.01 only along the central row of the domain, shown on
the left side of Figure 13. The analogy is that the domain is part of
the skin of a leopard embryo, and the horizontal line in the center
coincides with the neural crest, locally producing the diffusible
reagent B. In this phase, we supposed a static domain, which could
be equivalent to a situation where RD is much faster than actual
growth. There were many possible parameter choices here, from
the amount of B produced to the 𝑟 ratio and the lower and upper
bounds for both reagents. Albeit the diffusion is isotropic, most
combinations generated parallel lines to the neural crest, producing
a generative front that defined equispaced stripes. We have found a
particular set of values that produces exactly the desired behavior.
We had 𝑟 = 40, 𝑠 = 5 and 𝐿𝑏 = 2. These values were kept unchanged
through the three phases.
We have further split this simulation phase into two figures, to

better describe the reaction dynamics. For the initial 5,000 iterations,
we had the formation of stripes, induced by the localized production
of B, as is shown in Figure 13. The B reagent is shown, with higher
concentrations appearing as lighter colors.
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Fig. 13. The formation of stripes in a static domain with size 130 by 130.
Random production of B is done over the central row.

After stripes are initially defined, the pattern seemed to almost
stabilize. However, minor local variations along the stripes, together
with the continued random production at the center caused them to
oscillate. This waving movement then increased and the stripes (at
differentmoments) started to break apart and form round equispaced
spots. This is shown in Figure 14. We kept the simulation running
until iteration 220,000, where spots have evenly spread. Note that the
particular arrangement of spots followed the direction of the early
stripes. Particularly, given the continued effect of local production,
the last stripe to dissolve into spots was the central one. Due to
RD, the pattern was nearly stable, so continued simulation would
only slightly adjust the spots, staying this way indefinitely. The
definition phase has ended.
This first phase probably occurs early in the embryo life. The

formed prepattern is similar to many others possible to generate
from RD systems, in which the initial state is composed of many
round spots. But, dissimilar to other works, we have selected this
particular set of parameters first for maintaining the dorsal stripe,
and second for generating spots aligned along with it, thus forming

0 50 100

0

25

50

75

100

125

58750

0 50 100

0

25

50

75

100

125

112500

0 50 100

0

25

50

75

100

125

166250

0 50 100

0

25

50

75

100

125

220000

5

10

15

Fig. 14. Continued simulation for a static domain. The stripes have oscillated
and broken into round spots, which spread apart. The domain size is still
130 by 130. Random production of B continued over the central row.

approximate rows of round spots. Many other parameter combina-
tions for 𝑟 and 𝐿𝑏 would generate unorganized spots, but we sought
a much more structured prepattern for the leopard.
In the development phase we hypothesized the production of

a third reagent C to match the exact concentration of B at each
cell, which could take some time. Until now, we have supposed
that there was a slow but steady development of the embryo, slow
enough to not affect the appearance of the prepattern. Then, in this
second phase, an intense growth happened, where random cells
quickly subdivided. Both A and B continued to be subject to the
same parameters as before, but with cell subdivisions happening
13.33 times per second, while reaction-diffusion is still active. This
phase was very short, lasting only 12,000 iterations. In the end, the
domain has grown to size 370 by 370. And, more importantly, the
spots have split into the leopard rosettes, as shown in Figure 15.
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Fig. 15. Spots evolve into the leopard rosettes. Concentrations for A and B
are kept and growth is performed with the same parameters as before. The
domain ends with size 370 by 370. There is no local production of B.

We have balanced the duration of this phase and the growth
rate to match the final appearance of the rosettes to the grown
adult leopard shown in Figure 19. Moreover, we have decreased
the probability of division of the middle rows by half, which made
nearby spots to vertically develop less. This has led to elongated
rosettes that are similar to the reference leopard depicted. Therefore,
a reduced and localized growth rate on the skin near the spine is a
possible explanation for this local pattern variation.

At the same time, the concentration of reagent C was subject only
to the reinforcement mechanism, with diffusion rate 𝐷𝑐 = 1. We
adjusted the specific parameters for the reinforcement to keep the
overall size of spots, setting 𝑡 = 5 and𝑤 = 5, although at such small
a scale the former round spots were changed into irregular shapes.
In general, reinforcement is more effective in maintaining larger
regions. Still, the overall positions of spots and their relative size
were maintained during the same 12,000 iterations, as in Figure 16.
Note that the outcome was a mostly bicolor domain, where the
majority of cells have either a concentration of 0 or 10 for C.
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Fig. 16. The spots expanded into large irregular areas, made by reinforce-
ment on concentrations of C, which started identical to B at iteration 220,000.
Growth is the same as in Figure 15. The domain ends with size 370 by 370.

After the intense surge of cell division, we considered the develop-
ment phase finished. We might suppose that each cell had acquired
the concentrations of B and C that will determine the amount of
melanin produced by it and their offspring cells during the animal
life. This phase could probably occur when the animal was still in
the womb of its mother, but having its pattern already assigned
to skin cells. Such a pattern would be visible much later on the
development of the fetus, when the fur grows.

In themaintenance phase the reinforcement process has taken
care of B and C reagents (we believe A is not necessary anymore),
amplifying and smoothing-out the pattern as the domainwas further
enlarged.We hypothesize that, as a fetus grows, a reinforcement-like
mechanism could function after its birth and until the animal death.
In this phase we performed a slow growth rate of 1.33 expansions per
second, which run for 10,000 iterations, with the same parameters
as before (𝐷𝑐 = 1, 𝑡 = 5 and 𝑤 = 5). Both outcomes are shown in
Figure 17. After that, the maintenance phase has ended.

Fig. 17. Final states for B (on the left) and C (in the center). Each concentra-
tion was reinforced separately for 10,000 iterations. On the right, the final
states are combined into a normalized melanin texture, mapped into gray
values. All images have size 390 by 390.

We assume that B controls the amount of eumelanin (black pig-
ment), whereas C accounts for the production of pheomelanin (red-
dish pigment). If we also suppose that eumelanin takes precedence
over pheomelanin, higher concentrations of B would be visible over
lower concentrations of C. We thus map the final concentrations
of B and C into the normalized pigmentation parameter for the fur
shader from Chiang et al. [2016]. In this range, 0 stands for white
fur, passing from blonde to reddish hair, until almost black at 1. The
resulting mapping is shown in Figure 17. We map the low concen-
trations from B and C to the value 0.3, the high concentrations from
B to 1.0 and the high concentrations from C to 0.5.
We have used the grayscale image as the control texture for the

pigmentation parameter of 100,000 fur strands over a simple plane,
rendered in Blender 2.81 using its native implementation of the

fur shader from Chiang et al. [2016]. Each strand is assigned a
single color. The skin below the fur layer has a constant pink color.
Two point light sources were used and a typical setup of global
illumination through path-tracing was employed (using the Cycles
rendering engine). The result is shown in Figure 18, and a close-up
of the same model is displayed in Figure 1. For comparison, we
show the actual leopard (Panthera pardus) and a close-up used for
reference in Figure 19. It is interesting to note that the generated
pattern is simple, consisting of only two distinct “flat” areas besides
a constant background. Yet, it is enough to produce a realistic result,
as most of the visual complexity derives from fur orientation and
self-shading, which we captured in the 3D rendering.

Fig. 18. Full 3D rendering: final melanin parameters were mapped into
100,000 fur strands placed into a plane, and rendered by a specialized fur
shader. The skin below the fur layer has a constant pink color.

Fig. 19. Leopard: photo by Derek Keats (Flickr, CC BY 2.0) on the left, close-
up detail on the right.
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Now we briefly examine the transition from spots to rosettes. In
the right column of Figure 20, we illustrate several results for the
same three-phase process described. However, the length of the
development phase is modified, lasting 10,000 iterations for the top
image, and gradually reduced until 5,000 iterations for the bottom
one. Only a part of the domain is shown for clarity. We can see that
as the tissue grows less, the spots only partially develop, assuming
shapes visually similar to the continuous variation already seen
along the leopard body. For comparison, on the left of Figure 20, we
depict the rear left leg of the same leopard individual shown earlier,
taken from the same photo series.

Fig. 20. Variation on a leopard’s leg. Left: rear left leg detail from the leopard,
photo by Derek Keats (Flickr, CC BY 2.0). Right: resulting patterns by the
development phase lasting only 10,000 (top), 9,000, 8,000, 7,000, 6,000 and
5,000 (bottom) iterations.

In Figure 21 we present a visual comparison of leopard patterns
synthesized in prior works. Most use reaction-diffusion, but the
models employed and the combination of techniques vary greatly.

8 CONCLUSIONS
In this paper, we have shown the role of tissue growth in the es-
tablishment of realistic skin pigmentation patterns. By providing a
simple matrix expansion scheme, we could run an adapted reaction-
diffusion model over a growing domain. By exploring a large portion
of the parameter space, we have found interesting emerging pat-
terns, which have been adjusted to match existing species, namely
whiprays, poison dart frogs, squirrels and leopards.

We have emphasized that it is enough to anchor the pattern
formation process in simple techniques to reproduce a few realistic
patterns. Also, taking special care for the choice of prepattern is
crucial to the generated outcome. We have also employed a single-
reagent continuous model for reinforcement, similar to the typical
reaction-diffusion equations. This model enabled the maintenance
of the overall appearance of a pattern as its domain grows. We

Fig. 21. Visual comparison of generated leopard spots from the literature:
top left image from Turk [1991] (detail of figure 2), top center from Koch
and Meinhardt [1994] (figure 9b), top right from Walter et al. [1998] (figure
5b), bottom left from Liu et al. [2006] (figure 4b), bottom center from Kondo
and Shirota [2009] (figure 4d) and bottom right from Malheiros and Walter
[2017] (detail of figure 15).

thus have speculated that reinforcement could be an approximation
for the still unknown regulatory mechanism that maintains tissue
coherence as cells proliferate during healthy biological development.

8.1 Contributions
Here we summarize the highlights from this paper:

• We show that tissue growth is successfully approximated by a
set of matrix expansions, where random cells are subdivided
in parallel. This is both simpler and more efficient to imple-
ment than a point-based cell simulation, yet being sufficient
for the emergence of intricate patterns.

• We propose a reaction-diffusion model derived from Turing’s
original non-linear model. The focus is both to provide more
intuitive parameters for adjusting the resulting pattern (like
the ratio and scale parameters), and to expand the model
expressiveness (by setting the lower and upper bounds for
concentrations).

• We present a new continuous reinforcement model, providing
an autocatalytic chemical mechanism, which can be expressed
as a single equation akin to traditional RD systems. This
enables the overall pattern maintenance during growth.

• We discuss the importance of the careful definition of the
initial state and show the effect of providing biologically
plausible prepatterns. In particular, we draw attention for
both sparse spots and localized production, as typical states
that induce the development of more complex skin patterns.

• Finally, we have generated a few unprecedented 2D patterns
matching real species. For those, we were not just concerned
about the visual result, but also interested in establishing a
hypothetical set of phases that could model the actual de-
velopment of the pigmentation patterns. For that, we tried
to minimize parameter changes between stages and avoided
using any artificial control of the simulation outcome.
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8.2 Limitations and further research
As our major research goal, we strived to use only biologically
plausible pattern formation mechanisms. Therefore, we did not
focus on actual explanations for biochemical mechanisms or cell-to-
cell communication. We also did not address the stability analysis
of the mathematical models used. We believe there is much room to
be explored in those directions.
It is still an open research point whether a PDE system that

also takes into account continuous domain growth would achieve
the same results. We have made a brief comparison between our
matrix expansion scheme and the equivalent image interpolation
into a slightly higher resolution. That is, instead of expanding an
𝑚 × 𝑛 matrix once, we would interpolate its values into a new
(𝑚+1)×(𝑛+1) matrix. For example, using the same parameters from
the frog experiment (Figure 11), we have tested nearest, bilinear and
bicubic interpolation. In those three cases, the distinct frog spots did
not appear, only forming straight horizontal stripes, as in Figure 22.
So we believe that the noise introduced by our matrix expansion
scheme is a crucial part of the process, approximating the actual
cell division and introducing small local irregularities to the pattern
formation. Perhaps a continuous growth term would be too smooth
to produce some patterns; this is an important research question.
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Fig. 22. Growing domain by using bicubic image interpolation, following
the same prepattern and parameters as in Figure 11. Stripes split but there
are no spots formed due to lack of “division noise”.

Another perceived limitation is the length of the exploratory
work to discover new patterns. However, we believe our approach
could be extended to match other biologic pigmentation patterns,
needing a technique for pattern similarity comparison and visual
characterization, providing a utility function to automate pattern
matching. Then, it would theoretically be possible to infer the correct
parameters and prepattern to reproduce a given input. But our
technique certainly is not able to match arbitrary textures, by not
being image nor exemplar-based.
Our process can provide pattern diversity by changing both the

random seed and slightly altering the parameters from an already
defined pattern, albeit this is manually done by now. In the long
run, our approach could be streamlined to provide finer detail and
variation to artistic production lines.

In Appendix A, we make a brief comparison of the computational
effort against a point cloud arrangement. We opted to use matrices
based on their performance, as our setup aimed interactive explo-
ration. But our approach could be directly applied to a triangulated
3D mesh, provided the adapted Turing model runs over its surface
and the idea of local growth is executed by adding random new
vertices, approximating cell division.

We believe that although focused on coat patterns, our results are
essential for Computer Graphics because they restate that complex
pigmentation patterns seem mostly induced by growth and ran-
domness. Besides, 3D form development induces localized surface
growth. Therefore, a proper animation of an embryo with our tech-
nique applied onto its surface would yield local patterns resulting
from the composed effects of tissue development.
As a first step towards this goal, we succeed in simulating in

2D the overall arrangement of spots of a leopard along its spinal
column. We also matched the variation along its leg, explaining
that the differences of spot sizes and shapes might be simply due to
distinct growth during animal development.

Naturally, exploring this process over a 3D model is a promising
next step, where many scientific works have already laid the basis
for further research in that front.

Finally, another large venue for exploration is to try to reproduce
many other biological patterns seen in nature, including those from
the plant kingdom.
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A TIMINGS AND PARAMETERS
Our implementation is written in Python with the NumPy and SciPy
libraries, being run in a Linux desktop powered by an Intel Core
i3-9100F CPU running at 3.6 GHz.
We have compared the performance between our matrix expan-

sion approach and the two point-based NNS techniques available
in the publicly available source code from Malheiros and Walter
[2017], namely spatial sorting and 𝑘-d tree. We have set up a 50 by
50 initial domain with reaction-diffusion that grows during 12,000
iterations until reaching about 18,000 cells in both our matrix ex-
pansion (taking on average 6.06 s) and spatial sorting (taking 44.02
s). Our technique is about seven times faster on average. In a second
test, we set up a 100 by 100 initial matrix, again growing during
12,000 iterations until reaching about 19,000 cells. The comparison
was made between our expansion scheme (on average 8.57 s) and

the 𝑘-d tree (taking 153.65 s), which gives a result nearly eighteen
times faster.

In Tables 1 and 2 we present the timings and parameters for most
figures in our work.

Table 1. Timing and information for the figures.

Figure Time Final Growth Iterations Boundary
(s) size rate (/s) condition

4 1.72 50 × 50 - ≤ 33,333 toroidal
5 5.46 100 × 100 0.5 ≤ 33,333 toroidal

6 top 0.94 200 × 200 5 5,000 toroidal
6 mid. 6.14 200 × 200 5 5,000 toroidal
6 bot. 6.14 200 × 200 5 5,000 toroidal
8 1.41 200 × 200 5 5,000 toroidal
9 14.45 200 × 200 2.5 14,000 toroidal
10 13.68 120 × 120 2.5 24,000 toroidal

11,22 5.87 125 × 85 0.5 19,000 no flux
12 15.60 180 × 180 1.25 16,000 no flux

13,14 208.55 130 × 130 - 220,000 no flux
15 45.52 370 × 370 13.33 12,000 no flux
16 15.17 370 × 370 13.33 12,000 no flux
17 54.23 390 × 390 1.33 10,000 no flux

Table 2. Parameters for the figures.

Figure Parameters
4,5 𝑟 = [4.2, 6, 12, 20, 40], 𝑠 = 3,𝑈𝑎 = [6.2, 6.0, 5.2, 4.4, 4.0]

𝐿𝑏 = [3, 3, 3, 3.5, 4],Δ𝑡 = [0.01, 0.01, 0.008, 0.006, 0.003]
6 mid. 𝑟 = 8, 𝑠 = 10,Δ𝑡 = 0.004
6 bot. 𝑟 = 8, 𝑠 = 10,𝑈𝑎 = 5.7,Δ𝑡 = 0.004
8 𝐷𝑐 = 1.5, 𝑡 = 5.8,𝑤 = 4,Δ𝑡 = 0.004
9 𝑟 = 30, 𝑠 = 3, 𝐿𝑏 = 2,Δ𝑡 = 0.004

𝑟 = 8, 𝑠 = 3, 𝐿𝑏 = 2,Δ𝑡 = 0.004
10 𝑟 = 30, 𝑠 = 6, 𝐿𝑏 = 3,Δ𝑡 = 0.002

𝑟 = 8, 𝑠 = 3, 𝐿𝑏 = 3,Δ𝑡 = 0.002
11,22 𝑟 = 4.5, 𝑠 = 4,𝑈𝑎 = 6.8,𝑈𝑏 = 6.2,Δ𝑡 = 0.01

𝑟 = 4.5, 𝑠 = 2,𝑈𝑎 = 6.8,𝑈𝑏 = 6.2,Δ𝑡 = 0.01
12 𝑟 = 20, 𝑠 = 4,𝑈𝑎 = 7.2,𝑈𝑏 = 7.2,Δ𝑡 = 0.004

13,14 𝑟 = 40, 𝑠 = 5, 𝐿𝑏 = 2,Δ𝑡 = 0.0015
15,17
16 𝑡 = 5,𝑤 = 5, 𝐷𝑐 = 1,Δ𝑡 = 0.0015
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